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Quantum Cosmology with a Complex f 4 Field at
Finite Temperature
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Quantum cosmology with a complex f 4 field at finite temperature for the Vilenkin
boundary condition and the Hartle±Hawking boundary condition is studied. The
Euclidean region in minisuperspace is generally bounded by a closed curve. The
wave function of the universe calculated in the WKB approximation can cross,
through scattering or tunneling, from the initial classically allowed region to the
final classically allowed region. For a given value of scalar field, the probability
density for the Vilenkin boundary condition is smallest at zero temperature, and
when temperature increases, the probability density rises remarkably. At the same
time, the opposite results are given for Hartle±Hawking boundary condition. In
addition, the classical trajectories of the universe are calculated in detail.

1. INTRODUCTION

Since Hartle and Hawking (1983) and Vilenkin (Vilenkin, 1982, 1988)

described the birth of the universe in the frame of quantum gravitation,

quantum cosmology has become an area of extensive research. Many signifi-
cant results have been obtained through the discussion of the universe wave

function (Halliwell, 1988; Ducan, 1990). Generally speaking, the ultimate

aim of quantum cosmology is to predict the initial state of the universe by

the wave function of the universe. The universe wave function is formulated

by solving the zero-energy SchroÈ dinger equation, i.e., the Wheeler±DeWitt
(WDW) equation (DeWitt, 1967). Two methods, which correspond to different

boundary conditions, have been applied to the problem of determining the

quantum state of the universe. The first approach, suggested by Vilenkin

1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
e-mail: candz@center.shao.ac. cn.

2 National Astronomical Observatory, Chinese Academy of Science, Beijing 100012, China.
3 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China.

1969

0020-7748/99/0700-196 9$16.00/0 q 1999 Plenum Publishing Corporation



1970 Zhang and Shen

(1982, 1983, 1984, 1986, 1988), is based on the fact that, after the universe

spontaneously nucleates in a de Sitter space, it evolves along an inflationary

scenario. The universe was created through a potential barrier, which is
generally referred to as ª quantum tunneling from nothing.º The universe

wave function, i.e., the tunneling wave function, derived in this way is

complex. Another approach is given by Hartle, Hawking, et al. (Hartle and

Hawking, 1983; Hawking, 1982; Hawking and Luttrell, 1984a, b; Hawking

and Wu, 1985; Hawking and Page, 1986; Halliwell and Hawking, 1985;

Halliwell, 1986, 1987). The wave function of the universe, i.e., the Hartle±
Hawking wave function, is given by a path integral over compact Euclidean

geometry and is real. Vilenkin (1988) pointed out that the tunneling wave

function can predict initial states that lead to inflation. More detailed descrip-

tions have been given for some cosmological models with matter fields (Hartle

and Hawking, 1983; Vilenkin, 1982, 1983, 1984, 1986, 1988, 1994, 1995;

Ducan, 1990; Hawking 1982; Hawking and Luttrell, 1984a, b; Hawking and
Wu, 1985; Hawking and Page, 1986; Halliwell and Hawking, 1985; Halliwell,

1986, 1987, 1988; Kamenshchik et al., 1995). Generally, the complex scalar

model has more physical significance than the real scalar model because it

coincides with the matter hydrodynami c field model. So Khalatnikov and

Mezhlumian (1992) introduced a complex scalar field in the frame of Fried-
mann cosmology. Different from the real scalar field case, the classically

forbidden region in the minisuperspace is bounded by a closed curve and

this region is not convex everywhere. Amendola and Khalatnikov (1994)

further studied the complex field. Using the Vilenkin boundary condition and

WKB approximation, they obtained a wave function of the universe which

can, by scattering or tunneling, reach the final classical state from the initial
classical state. For cosmological constant L 5 0, the probability density

distribution describes a classical universe that preferentially starts with a

large matter content. In addition, they checked the no-rolling approximation

method through a slow-rolling approximation. The result shows that the no-

rolling approximation is reliable for ) U 8 ) ¿ U. But all these models for the

scalar field are considered at zero temperature. According to the big-bang
cosmological model, the universe in the very early period is in a state with

high temperature and high density, and spontaneous symmetry breaking will

be restored when T . Tc. Therefore, it is very important to explore quantum

cosmology at finite temperature and to understand the very early state of the

universe. So we further explore the effect of quantum cosmology with a

complex f 4 field at finite temperature in this paper.
In Section 2 we describe the behavior of the complex f 4 field at finite

temperature, and give the classical trajectories of the universe in Section 3.

The wave function of the universe and probability density distribution are

calculated in Section 4. Finally, we present our conclusions in Section 5.
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2. COMPLEX f 4 FIELD AT FINITE TEMPERATURE

The effective potential of the f 4 field at zero temperature takes the form

V( f ) 5 2 m2 f 2/2 1 f 4/4 f 0 1 f 0m
4/4 (1)

where f 0 is the value which satisfies the equation V( f ) 5 0. The effective

potential of the f 4 field at finite temperature can be found by using the Linde

procedure (Linde, 1979), and reads

V( f , T ) 5 M f 2/2 1 f 4/4 f 0 1 f 0m
4/4 (2)

where M 5 T 2/4 f 2
0 2 m2. Setting - V( f , T )/ - f 5 0, we have

M f 1 f 3/ f 0 5 0 (3)

which has three roots

f 1 5 0, f 2
2,3 5 f 0(m

2 2 T 2/4 f 2
0) (4)

where f 1 corresponds to a false vacuum and f 2 and f 3 correspond to two
true vacua. If m2 2 T 2/4 f 2

0 , 0, f 2 and f 3 reduce to two imaginary roots

and the true vacua will vanish. So the condition

m2 2 T 2/4 f 2
0 5 0 (5)

determines the critical temperature Tc. When T . Tc , the spontaneous symme-

try breaking is restored. From Eq. (5), we obtain Tc 5 2m f 0.

3. THE CLASSICAL TRAJECTORIES OF EVOLUTION OF
THE UNIVERSE

We shall consider the Lagrangian action of an interacting gravitational

and complex scalar field (. . . , 19 )

S 5 # (R/16 p G 1 g m n F *; m F ; n /2 2 V( F * F )) ! 2 g d 4x (6)

where g is the metric determinant and R is the scalar curvature. Similar to
Amendola and Khalatnikov (1994), we assume that the effective potential

V( F * F ) includes a cosmological constant L and the signature of the metric

is ( 1 2 2 2 ). The complex scalar field is F 5 f exp(i u ), and the effective

potential V( F * F ) takes the form of a f 4 field at finite temperature

V( F * F ) 5 V( f , T ) 5 M f 2/2 1 f 4/4 f 0 1 f 0m
4/4 1 L (7)

where M 5 T 2/4 f 2
0 2 m2. The metric and complex scalar are assumed to be

homogeneous and isotropic. For a closed Robertson±Walker universe, the

metric is written as
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ds2 5 dt2 2 a2(t) d V 2
3 (8)

where d V 2
3 is the metric on a unit three-sphere and a(t) is the scale factor.

So the scalar curvature is given by

R 5 6a 2 2(1 1 aÇ 2 1 aaÈ ) (9)

Considering (8) and (9), Eq. (6) reduces to

S 5 # L(a, aÇ , f , f Ç , u , u Ç ) dt (10)

where

L 5 2 12 p 2l 2 2
p aaÇ 2 1 12 p 2l 2 2

p a 1 p 2a3 f Ç 2 1 p 2a3 f 2 u Ç 2 2 2 p 2a3V( f , T )

Using the method of canonical quantization, we can get the momenta conju-

gate to the minisuperspace coordinates a, f , and u , respectively:

pa 5 2 24 p 2l 2 2
p aaÇ , p f 5 2 p 2a3 f Ç , p u 5 2 p 2a3 f 2 u Ç (11)

The current of the scalar field is defined by

J m 5 g m n f 2 u ; n (12)

So J 0 5 f 2 u Ç , and the classical conserved charge is

Q 5 # J 0 ! 2 g d 4x 5 2 p 2a3 f 2 u Ç (13)

Using (10), (11), and (13), we can derive the Hamiltonian of the system

H 5 2 p2
a /48 p 2l 2 2

p a 1 p2
f /4 p 2a3 1 Q2/4 p 2a3 f 2 2 12 p 2l 2 2

p a (14)

1 2 p 2a3V( f , T )

The operator transformation is given by

pa ® 2 i - / - a, p f ® 2 i - / - f (15)

So the Wheeler±DeWitt equation, i,e., H C 5 0, satisfies

[ ¹ 2
a 2 12l 2 2

p a 2 2 ¹ 2
f 2 U(a, f , T )] C 5 0 (16)

where

U(a, f , T ) 5 a2[ 2 12l 2 2
p Q2/a4 f 2 1 576 p 4l 2 4

p 2 96 p 4l 2 2
p a2V( f , T )]

In order to compare with the literature (Amendola and Khalatnikov, 1994),

we use units in which 8 p G 5 " 5 c 5 1 and rescale every term of the
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superpotential U(a, f , T ). Thus the Wheeler±DeWitt equation can now be

rewritten as

[ ¹ 2
a 2 6a 2 2 ¹ 2

f 2 U(a, f , T )] C 5 0 (17)

where U(a, f , T ) 5 a2[ 2 Q2/a4 f 2 1 1 2 a2V( f , T )]. The first and third

terms of U(a, f , T ) coincide roughly with the initial classically allowed

region and final one, respectively, and the middle term coincides with the

classically forbidden region.

Figure 1 gives the contours of the equipotential in the minisuperspace

(a, f ) for superpotential U(a, f , T ). Figure 1a shows the results at different
temperatures in the case of Q 5 5, and the Fig. 1b in the the case of Q 5
0. In the minisuperspace (a, f ), U(a, f , T ) 5 0 divides the plane into two

regions: U(a, f , T ) . 0, corresponding to the classically forbidden region,

i.e., Euclidean region; and U(a, f , T ) , 0, corresponding to the classically

allowed region, i.e., the Lorentzian region. U(a, f , T ) 5 0 determines the

boundary between these two regions. We can see from this figure that, as in
the case of the effective potential V( f , T ) 5 m2 f 2/2 1 L introduced in the

literature (Amendola and Khalatnikov, 1994), the Euclidean region contour

at finite temperature is also a closed curve in minisuperspace (a, f ). With

the increase of temperature the Euclidean region contracts gradually. In addi-

tion, some classical trajectories cannot enter the Euclidean region. When they

approach the boundary U(a, f , T ) 5 0, they bounce back to become the
collapsed universe. There are, however, some classical trajectories which

need not cross the classically forbidden region and always keep expanding.

When Q 5 0, the superpotential of the complex scalar field becomes identical

to that for a real scalar field in which the classically forbidden region is an

open curve. The lines from top to bottom in Fig. 1b correspond to the
case of temperature T 5 0, T 5 m f 0, T 5 2m f 0, T 5 3m f 0, and T 5
3.42m f 0, respectively.

Using the equation of motion, pÇ f 5 2 - H/ - f , and the conserved equation

of current, J m
; m 5 0, we can write the classical field equation as

f È 1 3aÇ f Ç /a 2 f u Ç 2 1 V 8( f , T ) 5 0, ( ! 2 g f 2 u ; m ); m 5 0 (18)

where a prime denotes derivative with respect to f . So the classical trajectory
in the initial classically allowed region is

a( f ) 5 a1 exp[( f 2 2 f 2
1)/4] (19)

where a1 and f 1 are initial values in this region. Equation (19) is identical

to the result given by Amendola and Khalatnikov (1994). Similarly, the

classical trajectory in the final classically allowed region is
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Fig. 1. Contours of the equipotential in the minisuperspace (a, f ) for superpotential U (a, f ,

T ). (a) The case Q 5 5; (b) the case Q 5 0.
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a( f ) 5 a2[I( f 2) 2 I( f )] exp[( f 2
2 2 f 2)/8] (20)

where

I( f ) 5
2 4( L 1 f 0m

4/4)ln f
0.04 2 T 2 f 2

0

1
( 2 0.0016 f 0 1 0.08T 2 f 3

0 2 T 4 f 5
0 1 64 L ) ln(4x2 2 0.04 f 0 1 T 2 f 3

0)

32(0.04 2 T 2 f 2
0)

Here a2 and f 2 are initial values in the region.

4. THE WAVE FUNCTION OF THE UNIVERSE AND
PROBABILITY DENSITY DISTRIBUTION

Adopting the no-rolling approximation, we can approximate the

Wheeler±DeWitt equation (17) as

[ ¹ 2
a 1 ( p/a) ¹ a 2 U(a, f , T )] C 5 0 (21)

where p denotes the ambiguity in the ordering of factors a and - / - a. Taking

into account the WKB approximation, we obtain the solution of Eq. (21) at

U(a, f , T ) , 0,

C V 5 C1a
2 p/2p 2 1/2(a, f , T ) exp F 6 i # p(a, f , T ) da G (22)

The solution of Eq. (21) in the range U(a, f , T ) . 0 is

C V 5 C2a
2 p/2 ) p(a, f , T ) ) 2 1/2 exp F 6 # ) p(a, f , T ) ) da G (23)

In the two expressions above, c1 and c2 are coefficients and p(a, f , T ) 5
[ 2 U(a, f , T )]1/2. The negative and positive signs in Eq. (22) correspond

to outgoing and ingoing waves, i.e., expanding and contracting universes,
respectively. The exact solutions of Eqs. (22) and (23) are not easily obtained,

so we divide the minisuperspace into different regions to solve them. As

mentioned before, the first and third terms of the superpotential U(a, f ,

T ) coincide roughly with the initial and final classical allowed regions,

respectively, and the middle term coincides with classical forbidden one. The

value of a at the boundary between the regions with the first and second
terms is determined by a2

12 > Q/ f , while the value of a at the boundary

between the regions with the second and third terms is a2
23 > 1/V( f , T ).

Because the superpotential U(a, f , T ) at finite temperature is a closed curve

in the minisuperspace (a, f ), we can find two points which satisfy a2
12 >
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a2
23 with roots f l and f h. When f . f h and 0 , f , f l , the Euclidean

region will vanish, which means that the wave function never goes through

a potential barrier. In these regions, the middle term of U(a, f , T ) is negligible.
At a

*
5 (Q/ f )1/3V( f , T ) 2 1/6, the remaining two terms of U(a, f , T ) become

equal. From Eqs. (22) and (23), it is clear that the wave function in the

classically forbidden region is exponential and that in the classically allowed

region is oscillating.

Inserting superpotential U(a, f , T ) in Eqs. (22) and (23), we can calculate

the wave function. In the range a , a12, the wave function is

C V 5 a 2 p/2(a f /Q)1/2 exp[ 6 i(Q/ f ) ln(a/a12)] (24)

which is an exponential wave function. The wave function in the range a .
a12 follows,

C V 5
a( 2 p 2 1)/2

[1 2 V( f , T )a2]1/4

3 exp F 6
(1 2 V( f , T )a2)3/2 2 (1 2 V( f , T )a2

12)
3/2

3V( f , T ) G (25)

So we can also evaluate the wave function in the range a . a23

C V 5
2 ia( 2 p 2 1)/2

[V( f , T )a2 2 1]1/4 exp F 6 1 2 (1 2 V( f , T )a2
12)

3/2

3V( f , T ) 2 G
3 exp F 6

2 i(V( f , T )a2 2 1)3/2

3V( f , T ) G (26)

In the regions f . f h and 0 , f , f l , the wave functions read

C V 5 a 2 p/2(a f /Q)1/2 exp[ 6 i(Q/ f ) ln(a/a
*
)], a , a

*
(27)

C V 5 a( 2 p 2 2)/2 V( f , T ) 2 1/4 exp[ 6 iV( f , T )1/2 (a3 2 a3

*)/3], a . a
*

(28)

The connection formulas for wave functions in different regions are the same

as those of Amendola and Khatnikov (1994). According to Halliwell (1988)

and Vilenkin (1994), the relation of transformation from the tunneling wave

function to the Hartle±Hawking wave function is

C HH 5 C V(V ® e 2 i p V, a ® ei p /2a) (29)

From Eqs. (26) and (29), we can also calculate the tunneling wave function

in the range a . a23,
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C HH 5
2 ia( 2 p 2 1)/2ei p (p 2 1)/4

[V( f , T )a2 2 1]1/4 exp F 6 1 (1 2 V( f , T )a2
12)

3/2

3V( f , T ) 2 G
3 exp F 6

i(V( f , T )a2 2 1)3/2

3V( f , T ) G (30)

The probability density distribution for f at a given value of a takes

the form

P( f ) 5
i

2
ap[ C * ¹ a C 2 C ¹ a C *] (31)

Obviously, for regions 0 , f , f l and f . f h , the probability density

distribution for the Vilenkin boundary condition is equal to 1. Substituting
Eq. (26) into Eq. (31), we obtain the probability density distribution for the

Vilenkin boundary condition for the remaining intermediate- f region where

the WF tunnels the potential barrier,

PV( f ) 5 exp[ 2 2(1 2 V( f , T )Q/ f )3/2(3V( f , T )) 2 1] (32)

Similarly, inserting Eq. (30) into Eq. (31), we obtain the probability density

distribution for the Hartle±Hawking boundary condition in the same f region,

PHH( f ) 5 exp[2(1 2 V( f , T )Q/ f )3/2(3V( f , T )) 2 1] (33)

The probability density distribution for the Vilenkin boundary condition at

different temperatures is shown in Fig. 2a. The variation of the probability

density with scalar field f is analogous to that of Amendola and Khalatnikov

(1994). Given an arbitrary value of the scalar field f in the range ( f l , f h),

the probability density at zero temperature is smallest. With the increase of
temperature T, the probability density grows remarkably. This result is also

easily obtained by theoretical analysis. Figure 2b gives the probability density

distribution for the Hartle±Hawking boundary condition at different tempera-

tures, which is opposite to that for the Vilenkin boundary condition.

5. CONCLUSIONS

In this paper we have explored the classical and quantum cosmology

of the complex f 4 field at finite temperature; our conclusions are summarized

as follows: (1) The Euclidean region in minisuperspace (a, f ) is generally
a closed curve. (2) The wave function of the universe calculated in the WKB

approximation can cross, through scattering or tunneling, from the initial

classically allowed region to the final classically allowed region. (3) The

probability density for the Vilenkin boundary condition at zero temperature
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Fig. 2. The probability density distribution at different temperatures (a) for the Vilenkin

boundary condition and (b) for the Hartle±Hawking boundary condition.
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is smallest at every given value of the scalar field. As temperature T grows,

the probability density increases remarkablly. Compared with this result, the

probability density distribution for the Hartle±Hawking boundary condition
shows contrary behavior.
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